Lab 4, CSC 202

Here we will (1) implement more advanced and more general-purpose binary search trees, and
(2) generate graphs to explore big-O characteristics of randomly generated binary search trees.

1 Setting Up Code

At this point, you should be able to create your own Git repository (hosted on the GitHub
account that you’ve already been using, presumably). Coordinate with your group however
seems best, e.g., Person A in a group can create a Git repository on their GitHub account and
then Person B can access that repository.

Your repository should contain these files: bst.py, bst_tests.py, bst_graphs.py. These files should

bst.py

import sys

import unittest

from typing import *

from dataclasses import dataclass
sys.setrecursionlimit (10**6)

bst_tests.py

import sys

import unittest

from typing import *

from dataclasses import dataclass
sys.setrecursionlimit(10**6)

from bst import *

class BSTTests(unittest.TestCase):
def test_example(self):
pass

if (__name__ == '__main__"'):
unittest.main()

bst_graphs.py

import sys

import unittest

from typing import *

from dataclasses import dataclass
import math

import matplotlib.pyplot as plt
import numpy as np

import random
sys.setrecursionlimit(10*%6)

from bst import *
TREES_PER_RUN : int = 10000

def example_graph_creation() -> None:
Return log-base-2 of 'x' + 5.
def f_to_graph(x : float) -> float:
return math.log2(x) + 5.0

here we're using "list comprehensions": more of Python's
syntax sugar.

x_coords : List[float]
y_coords : List[float]

= [float(i) for i in range(1, 100)]
= [f_to_graph(x) for x in x_coords]
Could have just used this type from the start, but I want

to emphasize that 'matplotlib' uses 'numpy''s specific array
type, which is different from the built-in Python array

type.

X_numpy : np.ndarray
y_numpy : np.ndarray

np.array(x_coords)
np.array(y_coords)

plt.plot(x_numpy, y_numpy, label = 'log_2(x)')
plt.xlabel("X")

plt.ylabel("Y")

plt.title("Example Graph")

plt.grid(True)

plt.legend() # makes the 'label's show up
plt.show()

if (__name__ == '__main__"'):
example_graph_creation()

2 A More Advanced Binary Search Tree
Do the following in bst.py.

You will implement a binary search tree that contains a comes_before operation—literally a
field that has a function as a value. Operations on a binary search tree revolve around a "less
than" relationship that determines if searching through a tree progresses to the left child or to
the right child. Until now you’ve just used the < operator to handle this. But in this lab you will
instead allow the user of your BST class to provide (at the time of creation) a function to
determine if one value comes before another. This function must take in two values and return
True if the first should come before the second. (The type annotation/hint for such a function is
Callable[[Any,Any],bool].)

In a file named bst.py, implement the following class and functions:

2.1 To Do

e ABinTree type that is either a Node or None. The element/value field in the Node

should be of type Any.

¢ Afrozen BinarySearchTree class that contains two fields: a comes_before function and a

BinTree.

e The following functions. Most will require helper functions that accept the

comes_before function as an argument (use the type Callable[[Any,Any],bool] for your

type hints—this type hint describes a function or function-like object that takes two

Any’s as arguments and returns True/False).

is_empty — given a BinarySearchTree, return True if the tree is empty, False
otherwise.

insert — given a BinarySearchTree and a value as arguments, insert adds the
value to the tree by using the comes_before function to determine which path to
take at each node; inserts into the left subtree if the value "comes before" the
value stored in the current node and into the right subtree otherwise. You will
almost certainly want to write a helper function that accepts the comes_before
field of BinarySearchTree as another argument (remember the just-described
type hint).

This function returns the resulting BinarySearchTree.

lookup — given a BinarySearchTree and a value as arguments, return True if the
value is stored in the tree and False otherwise. Note, however, that the tree was
not created with an equality comparison function. Instead, you will use the
comes_before function to determine if the value appears in the tree. More
specifically, when comparing two values, if neither value "comes before" the
other, then the values will be considered equal (i.e., for our purposes, (not (a < b)
and not (b<a))->a=Dh).

delete — given a BinarySearchTree and a value as arguments, delete removes the
value from the tree (if present) while preserving the binary search tree property
that, for a given node’s value, the values in the left subtree come before and the
values in the right subtree do not. If the tree happens to have multiple nodes
containing the value to be removed, only a single such node will be removed.

This function returns the resulting BinarySearchTree.

2.2 Test Cases

In bst_tests.py, write test cases to verify that your implementation works correctly for the
following comes_before functions: basic numeric ordering of integers, alphabetic ordering of
strings, and Euclidean-distance-from-zero of X/Y points (make a simple class called Point2
containing X/Y coordinates).

3 Graphs and Report
Do the following in bst_graphs.py.
3.1 Heights of Randomly Generated Trees.

What is the height of an “average” binary search tree? How does that height increase as N
increases?

First, let TREES_PER_RUN = 10,000. (All-caps is the known style for constant, global variables.)
This is a large enough number that if you generate TREES_PER_RUN different random trees that
all have a given size N, you (roughly speaking) can explore the behavior of an “average tree” of
that N value.

Write a function random_tree that takes in an integer n and generates a BinarySearchTree
containing n random floats in [0,1]. (Use random.random() to do this.) This BinarySearchTree
should use a comes_before function that relies on standard < behavior.

Experimentally find some n_max such that if you do the following TREES_PER_RUN times:
generate a random tree of size n_max and then calculate its height—then the total time taken is
from 1.5-2.5 seconds.

Make a graph of average tree height (y axis) as a function of N (x axis). Use 50 different N
samples spaced evenly from N=0 to N=n_max. At each N you’ll find the average height of
TREES_PER_RUN random trees of size N.

Use matplotlib to make your graphs directly using Python. There should be example code for
doing so in the repository code for this lab.

3.2 Inserting a Value into Random Trees

Make a graph that plots time-required-to-insert-a-random-value-into-an-average-tree-of-size-N
(y axis) as a function of N (x axis). Again use 50 evenly spaced N values from 0 up to some
n_max (possibly a different n_max from the one you used in 3.1.1—pick an n_max where the
total time to generate TREES_PER_RUN trees and insert a number into each one takes from 1.5-
2.5 seconds).

NOTE: If it becomes too difficult to generate the data for these graphs, you are free to reduce
TREES_PER_RUN.

3.3 Report

Make a document (in Word or whatever) including the two graphs along with brief explanations
for what you see (along with what you should expect to see).

